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Sequencing of the 16S subunit of the ribosomal RNA (rRNA) 
gene has been a reliable way to characterize diversity in a com-
munity of microbes since Carl Woese used this technique to 

identify Archaea in 1977 (ref. 1). Today, high-throughput sequenc-
ing machines used for this analysis are dominantly Illumina devices. 
Although they are cost-effective and accurate, Illumina sequences 
are limited to approximately 500 nucleotides per joined paired-end 
read. Given that the 16S rRNA gene is approximately 1,550 bp, 16S 
rRNA-targeted amplification sequencing is limited to only a por-
tion of the gene and is completed by targeting a selected subset of 
the nine hypervariable regions. This constraint ultimately prevents 
distinction between highly similar species and therefore short-read 
data can reliably generate taxonomic profiles measured down to only 
the genus level in most cases2. One workaround for this limitation 
is to assemble short reads through a synthetic long-read method3; 
another is sample specific barcoding4. Although these approaches 
have high accuracy, they require significantly more sequences or 
sample-specific library preparation, which introduces additional 
financial costs.

Recent developments in third-generation sequencing, from pro-
viders such as Pacific Biosciences (PacBio) and Oxford Nanopore 
Technologies (ONT), permit amplification of sequences spanning 
the entire 16S rRNA gene. However, these long reads come with 
one notable drawback: high rates of sequencing error5. Errors can 
be corrected by deducing a consensus sequence from multiple 
passes on each strand of genetic material as seen in PacBio HiFi6, 
or from multiple reads tagged with matching unique molecular 

identifiers7. Although these methods have produced near-perfect 
accuracy8 they again come with a significant increase in cost 
due to increased sequencing depth. To reduce these expenses 
and achieve species-level resolution from single-pass 16S rRNA 
reads, the appropriate software to account for high error profiles 
is needed.

The canonical pipeline for 16S rRNA analysis operates in two 
main steps. First, the set of raw sequences is de-noised to identify a 
smaller set of core sequences, in which each set is believed to repre-
sent a distinct taxonomic unit in the community. Various algorithms 
are available for this process9, however, the majority are calibrated 
to the low level of error associated with Illumina reads. Second, the 
representative sequences are compared to a database and assigned a 
taxonomic label. Given that reads are already corrected for error at 
this point, a database-lookup tool such as BLAST10 is effective here. 
These pipelines are operative because the input reads are accurate, 
and unfortunately they produce inconsistent results when chal-
lenged with error-prone reads.

Given that the ONT sequencers are comparatively recent to the 
marketplace, 16S rRNA method development for these devices has 
only just begun11. In the absence of dedicated tools, some studies 
have chosen to use more general read mapping software such as 
BWA-MEM12 or the LAST aligner13 to align reads directly to raw 
16S rRNA sequences from one of the major databases14–16, while 
other studies have chosen to incorporate metagenomic classifica-
tion methods designed for whole-genome shotgun sequences. 
Centrifuge17 proved capable of ONT shotgun sequencing analysis 
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and is now included as a step in ONT’s WIMP18 (What’s in my Pot?), 
a long-read workflow provided on its EPI2ME analysis platform. 
Kraken19 has also fared well in long-read 16S rRNA benchmark-
ing20 and has performed favorably compared with QIIME 2 (ref. 21) 
for 16S rRNA short reads when the results are re-estimated with its 
Bayesian cousin Bracken22,23.

NanoClust24 was the first published purpose-built method for 
taxonomic abundance profiling using full-length 16S rRNA ampli-
con sequencing from ONT devices. Here, the two-stage cluster 
and database-lookup procedure is implemented in Nextflow25 with 
external tools for demultiplexing, quality filtering, clustering, pol-
ishing and taxon assignment. Although the use of clustered consen-
sus sequences increases computational efficiency, this approach is 
susceptible to overlooking the identification of species that are truly 
present in the error-prone dataset.

One method that has successfully overcome high error rates in 
long-read data is MetaMaps26, a method designed for taxonomic 
binning of long, high-error shotgun sequencing reads. MetaMaps 
uses an approximate read mapping algorithm to identify multiple 
candidate species and locations for each read, then applies an expec-
tation–maximization (EM) algorithm to adjust the relative confi-
dence in each mapping based on the mapping density of other reads 
in the sample. This has the effect of smoothing out some of the noise 
that is inherently created by the ONT error profile. Although the 
approximation methods built into MetaMaps make it incompatible 
for the analysis of highly similar 16S rRNA genes, it and other EM 
algorithms that have successfully disambiguated ambiguous read 
mappings27,28 provoke interest in an EM method for error correc-
tion of long 16S rRNA reads.

Here, we present Emu, a microbial community profiling soft-
ware tool tailored for full-length 16S rRNA data with high error 
rates. Emu benefits from the increased precision potential provided 
by the full gene while accounting for high error rates produced by 
single-pass third-generation sequencing. Emu’s algorithm involves 
a two-stage process. First, proper alignments are generated between 
the reads and the supplied reference database. In the second stage 
an EM-based error-correction step is performed to iteratively 
refine species-level relative abundances based on total read map-
ping counts. This results in microbial community profile estima-
tions from full-length 16S reads that are more accurate than existing 
methods at both the genus and species level.

Results
To generate an accurate microbial community composition estimate 
from noisy full-length reads sequenced from the16S rRNA gene, an 
EM algorithm with a composition-dependent prior is developed in 
Emu. The algorithm is shown in Fig. 1 and a more detailed ver-
sion of the algorithm (including the equations used) is shown in 
Extended Data Fig. 1.

To demonstrate the performance of Emu, four studies were com-
pleted. The first study was a quantitative comparison of two dis-
tinct sets of simulated ONT sequences (Supplementary Tables 1 
and 2). The second study was a quantitative comparison of two dis-
tinct communities sequenced with both ONT and Illumina devices 
(Supplementary Tables 3 and 4), for which a de facto ground truth 
could be used to evaluate accuracy and compare methods. The 
third study was a series of analyses highlighting the various facets 
of Emu via a breakdown of profile estimations throughout the EM 
algorithm, a database comparison, a novel species simulation, a read 
mapper comparison and a naive application of the Emu default min-
imum abundance threshold. The final study was a demonstration of 
Emu’s applicability to understanding dynamics in actual microbial 
communities. In this real-world model, human vaginal microbiome 
clinical samples were processed with two separate pipelines: 16S 
rRNA long reads analyzed with Emu and whole-genome shotgun 
sequences processed with Bracken.

Quantitative comparison. To quantify the output of Emu in rela-
tion to several existing methods, four communities were used. The 
first two are single datasets of simulated ONT reads that follow the 
distribution of a published mock community. The other two are syn-
thetic mock communities, each of which was sequenced with both 
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Fig. 1 | The Emu algorithm. The Emu algorithm begins by generating 
alignments between input reads (R) and database sequences (S). The 
probability of each non-matching character alignment type (mismatch (X), 
insertion (I), deletion (D), softclip (S)) is calculated based on the number of 
occurrences of each character alignment type in all of the primary alignments 
from the read mapping. The probability of each alignment in the read mapping 
is then generated as P(r|t) from the counts of each character alignment type 
and their corresponding established probabilities. The EM phase is then 
entered, in which each read is broken down into the likelihood that it is derived 
from each possible species in the database P(t|r), and its overall composition 
estimate F(t) (which is deduced). This cycle repeats as the composition 
estimate influences read-taxonomy probabilities to give more weight to 
taxa with higher abundances, then the composition estimate is updated 
accordingly. Once minimal changes are detected between cycle iterations, the 
EM loop is exited. The composition estimate is then trimmed based on the 
specified minimum abundance probability threshold to complete one final EM 
iteration and the final composition estimate is produced.
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ONT and Illumina devices. The performance of each method was 
evaluated at both the genus and species level using three metrics: the 
L1-norm (that is, linear error) of the taxonomic abundance profile, 
the count of true-positive taxa, and the count of false-positive taxa. 
Computational resources required by each method were measured 
by recording the run time and memory usage for each software.

The set of methods used for comparison includes those dis-
cussed above: Kraken 2 (ref. 29), Bracken, NanoClust, Centrifuge and 
MetaMaps. We also include QIIME 2 and the primary alignment 
generated by minimap2 (ref. 30). Although minimap2 is not a compo-
sition estimator or read-level classifier in itself, it is included because 
it is instrumental in the Emu algorithm: minimap2 is the read map-
ping software that Emu uses to compute likelihood scores and itera-
tively estimate relative abundance. Inclusion of minimap2 in the 
comparison separates the effect of the EM implementation in Emu 
from the read mapping output it uses as a starting point. Identical 
reference databases were built for each software to ensure consistent 
comparison for all of the methods (see Methods for details).

Ground truth relative abundance values for synthetic communi-
ties are based on sample-specific imputed values. This was done to 
correct for fluctuations from the theoretical abundances that may 
occur during handling, storage or library preparation (including 
potential primer bias during 16S rRNA gene amplification). The 
two ZymoBIOMICS community profiles are reasonably similar to 
their abundance claims (Extended Data Fig. 2 and Supplementary 
Table 5), but the synthetic gut community is subject to greater varia-
tion by nature of the microbes included and the skewed distribu-
tion. Details on this process are given in the Establishing Ground 
Truth section in the Methods, and for these two communities the 
term ‘ground truth’ here refers to this imputed value.

Simulated mock community datasets. The ONT reads were simu-
lated following the composition of the published mock communi-
ties MBARC-26 (ref. 31) and the mouse gut profile from the Critical 

Assessment of Metagenome Interpretation II (CAMI2) Challenge32. 
MBARC-26 represents a simple community with 23 bacterial and 3 
archaeal strains, while our subsampled version of the CAMI2 profile 
increases microbial richness and contains 345 unique species, each 
of which is present in the Emu default database. Detailed informa-
tion on the reference sequences and distribution of simulated reads 
is contained in Supplementary Tables 1 and 2.

ZymoBIOMICS mock community standard dataset. A previous 
study compared 16S rRNA sample composition accuracy across a 
series of hypervariable regions as well as the full-length gene using 
the ZymoBIOMICS community standard catalog D3605 (ref. 33). 
We retrieved the ONT full-length dataset and one of the Illumina 
datasets for our analysis. We selected the Illumina dataset with 
targeted regions V4–V6 to represent short-read data, given that 
this dataset has been shown in the previous study33 to produce 
classification results that were among the most accurate for this  
specific community.

Synthetic mock gut microbiome dataset. To challenge our software, 
a synthetic community mimicking the human gut microbiome was 
created and sequenced with both ONT and Illumina devices, as 
described in the Creation of Gut Microbiome Mock Community 
in the Methods. To represent a real-world scenario with unknown 
species, Romboutsia hominis is included in the sample, even though 
this new species is not present in our database. The derived rela-
tive abundances of 21 species present in the sample are listed in 
Supplementary Table 4. One notable difference between the two 
datasets for this community is that Bifidobacterium dentium is not 
considered to be a true positive in the ONT sequences. This is a 
result of a recently noted issue with the standard ONT forward 
primer, which contains three mismatching bases to the family 
Bifidobacteriaceae and thus fails to amplify microbes of this taxa15. 
Consequently, the ONT dataset does not contain reads from this 
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microbe. This demonstrates the importance of an imputed ground 
for the mock communities and additionally highlights the need for 
further research to identify reliably universal primers for this region.

Performance. The results of all of the methods on the simulated 
dataset and two synthetic mock communities are listed in Table 1. 
The computational resources required by each method are listed in 
Supplementary Table 6. Complete abundance profile output from 
all methods on all datasets is provided in Supplementary Tables 
7–12. All of the generated results use the default Emu database.

MBARC-26 simulation. For the MBARC-26 simulated data, Emu 
outperforms every method (Fig. 1). Not only does Emu produce 
the lowest L1 and L2 distances, but it is also the only method to 
correctly identify all 26 species without producing any false posi-
tives. The difference in both the false-positive counts and the rela-
tive abundance error measurements between Emu and minimap2 
is substantial, and reflects the accuracy gains produced by the EM 
algorithm compared with a simple similarity-based taxon assign-
ment approach. It is evident from the memory and run time data 
between these two methods (Supplementary Table 6) that the 
majority of computational resources used by Emu are in fact due to 
its use of minimap2 for alignment generation. NanoCLUST results 

differ from the other methods shown in that it has no false positives 
but it fails to identify several of the present taxa; in other words, it is 
generally conservative in its identifications.

CAMI2 simulation. Results for the more complex simulated data 
shown in the CAMI2 dataset align with those reported from our 
first simulated dataset. Again, Emu reports the lowest relative abun-
dance error through both the L1 and L2 distances. In addition, Emu 
reports the best precision and F-score due to its ability to find a 
balance between true-positive detection and false-positive reports. 
Bracken’s re-estimated Kraken 2 results cause both the true and false 
positives to drop off significantly. However, Emu’s re-estimation of 
minimap2 findings reduces the false-positive counts by an order of 
magnitude at the cost of only 11 true positives. NanoCLUST and 
QIIME 2 analyses were not completed here because the CAMI2 
dataset lacked quality score information and was not compatible 
with either software. However, we expect neither software to be a 
top performer in species detection due to their inability to do so on 
the simpler simulated data shown above.

ZymoBIOMICS. For the ONT reads Emu produces the lowest mea-
sured error distances across the methods tested at both the genus 
and species levels. Although almost all of the methods accurately 
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detect the eight species in the sample, the number of false positives 
reported varies. Of the methods with perfect recall, NanoCLUST 
returns the fewest false positives and Emu returns the second few-
est. It is also important to note that the abundance accuracy and 
sensitivity measured in the ONT dataset prove superior to those of 
the Illumina dataset, especially at the species level. When restricted 
to only the Illumina results, Emu again has the lowest L1 distance. 
Although Emu is not primed for Illumina 16S reads, this shows 
that Emu is a sensible approach regardless of the read-error profile. 
Figure 2 provides a graphical representation of the accuracy mea-
sures displayed in Table 1.

Synthetic gut microbiome. For the ONT reads Emu once again has 
the best or near-best performance for these metrics on the synthetic 
gut microbiome community. This is an intentionally challenging 
community because it contains several microbes that have a rela-
tive abundance of below 0.01%, even based on putative input abun-
dance. This is a particular form of stress test for Emu because the 
EM algorithm specifically down-weights low-abundance taxa that 
are closely related to those in higher abundance (reflecting the like-
lihood of sequencing error accounting for the match). Nonetheless, 
Emu reports the best L1 distance at the species level. Centrifuge 
reports the best L2 distance, although this statistic is affected by 
the species that is not present in the database: Romboutsia hominis.  

In standard classification methods these reads are classified under 
an assortment of Romboutsia species, however, in methods involv-
ing statistical re-estimation these reads are labeled as a close relative, 
which ultimately increases the squared error. In terms of presence–
absence calls, Emu is only one species short of having the highest 
true-positive count but it has far fewer false positives than every 
method aside from NanoCLUST. Although NanoCLUST does 
report the lowest false-positive counts, it also detects fewer true 
positives than others. The results are shown in Extended Data Fig. 3.

Comparison of EM iterations within Emu. To get a sense of the 
value of the error-correction step, Fig. 4 shows the relative abun-
dance error calculated after subsequent EM iterations in Emu on the 
ZymoBIOMICS mock community ONT dataset. The error reduc-
tion with each iteration is especially clear for the Bacillus genus. The 
species that is present as per the manufacturer information is B. sub-
tilis, but B. halotolerans differs from it by fewer than 15 bases over 
the length of the entire 16S rRNA gene. As a result of this similarity 
and the high error in ONT reads, we would expect a large fraction 
of reads to map to B. halotolerans. Our minimap2 primary align-
ment results do just that by classifying the Bacillus species reads as 
approximately 67% B. subtilis, 18% B. halotolerans and 15% distrib-
uted among 21 other species. In Emu’s final estimate, however, more 
than 92% of the Bacillus reads are dedicated to B. subtilis, while only 
five additional Bacillus species are falsely identified to account for 
the remaining 8%.

Database comparison. To evaluate the default Emu database com-
pared with a larger, well-reputed34 16S rRNA gene database, results 
were generated with the Ribosomal Database Project (RDP)35 using 
Emu, minimap2, Kraken 2 and Bracken for our four ONT test 
datasets. The performance of each method was evaluated at both 
the genus and species level using three metrics: the L1-norm of 
the taxonomic abundance profile, the count of true-positive taxa 
and the count of false-positive taxa (Supplementary Table 13). 
Computational resources required by each method were measured 
by recording the run time and memory usage for each software 
(Supplementary Table 14). Complete abundance profile outputs 
for all RDP database results are listed in Supplementary Tables 
15–18. These results show that Emu with the Emu default database 
has the lowest L1-norm for all four test datasets at both the species 
and genus level compared with all other software tool and database 
combinations evaluated. Although we would expect this from our 
simulated datasets (MBARC-26 and CAMI2) because these were 
simulated from sequences in the Emu database, these findings were 
mirrored in our mock communities as well.

Novel species simulation. To simulate the real-world scenario of 
communities containing novel species, or species that are not yet in 
our database, we used our CAMI2 dataset and removed sequences 
from our Emu and RDP databases. First, a list of 35 of the 345 spe-
cies in our simulated CAMI2 dataset was randomly selected, in 
which reads from these species comprised 9.5% of the total CAMI2 
simulated reads. All database sequences classified under these 35 
species were removed from both the Emu and RDP databases. 
Results were then generated for our complete CAMI2 dataset with 
both the incomplete Emu and RDP databases by Emu, minimap2, 
Kraken 2 and Bracken. Performance statistics L1-norm, TP (true 
positive), FP (false positive) and unclassified percent are given in 
Supplementary Table 19, while complete abundance profile outputs 
are given in Supplementary Tables 20 and 21. These results show 
that Emu with the Emu database still produces the lowest L1-norm 
across taxonomic ranks evaluated when presented with novel spe-
cies. A heatmap of the relative abundance error for families of the 
removed species with both the incomplete Emu and RDP databases 
is shown in Extended Data Fig. 4. This highlights the ability of Emu 

Relative abundance error throughout EM iterations

+5%

–5%

0

1 2 3 4  5 10 15 20 Out

Bacillus halotolerans

Bacillus mojavensis

Bacillus sp. JS

Bacillus sp. MD-5

Bacillus subtilis

Bacillus vallismortis

Bacillus velezensis

Enterococcus faecalis

Escherichia coli

Limosilactobacillus fermentum

Listeria monocytogenes

Pseudomonas aeruginosa

Salmonella enterica

Staphylococcus argenteus

Staphylococcus aureus

Other

Number of EM iterations:

43 15 10 7 6 6 6 6 6

0.
25

0.
11

0.
07

0.
06

0.
05

0.
04

0.
04

0.
04

0.
03

False positives:

L1-norm:

Fig. 4 | Relative error after consecutive EM iterations within Emu on 
ZymoBIOMICS ONT reads. The relative error of the Emu algorithm after 
1, 2, 3, 4, 5, 10, 15 and 20 EM iterations is shown, as well as the final Emu 
output (out) on our ZymoBIOMICS sample sequenced by an ONT device. 
The 15 most abundant species in the computational estimate are displayed. 
The final Emu output includes threshold trimming and final re-estimation 
after 22 EM iterations. Darker blue represents an underestimate by the 
method, while darker red represents an overestimate. The color scheme is 
capped at ±5, meaning that errors greater than ±5% will be shown in the 
maximum error colors. The false-positive count and L1-norm are reported 
for each iteration with the ZymoBIOMICS guaranteed minimum abundance 
threshold of 0.01% applied.

Nature Methods | VOL 19 | July 2022 | 845–853 | www.nature.com/naturemethods850

http://www.nature.com/naturemethods


ArticlesNATuRE METHoDS

with the Emu database to accurately classify reads from novel spe-
cies at the lowest taxonomic rank that is in the database.

Read mapping software comparison. To evaluate the impact of the 
read mapping software in Emu, results were generated with a ver-
sion of Emu with BWA-MEM12 as the read mapper (Supplementary 
Table 22). In both datasets tested, the error measured (L1-norm and 
L2-norm) and the number of false positives decreased after the EM 
algorithm is applied to the read mapping results.

Minimum abundance threshold comparison. To evaluate the 
error-correction step in Emu compared with the use of a minimum 
abundance threshold, we have applied the Emu default minimum 
abundance threshold of 10 reads to the results listed in Table 1. 
These results show that Emu still reports the fewest false positives 
across the tested datasets (Supplementary Table 23).

Research application: human vaginal microbiome. Variation in 
vaginal microbiota is associated with several urogenital diseases 
(for example, bacterial vaginosis)36,37, a variety of sexually transmit-
ted infections (for example, HIV)38, and uncategorized phenotypes 
such as reproductive success36,39. Vaginal microbial communities 
can be classified into six so-called ‘community state types’, that is, 
I, II, III, IV-A, IV-B and V, which are defined by the relative abun-
dance of several Lactobacillus species and the presence of anaero-
bic bacteria40,41. We generated community composition from 12 
vaginal samples, six with diagnosed bacterial vaginosis and six con-
trols, using Emu and an established whole-genome shotgun (WGS)  

metagenomic approach. We compared the characterization of com-
munity state types between the two pipelines to test Emu’s ability to 
reproduce accepted community clusters.

Experimental design. Twelve vaginal swabs were obtained from 
the German Centre for Infections in Gynecology and Obstetrics at 
Helios Hospital Wuppertal and prepared at the Institute of Medical 
Microbiology, Virology and Hospital Hygiene at the University of 
Duesseldorf. Samples 1–6 originate from control group patients 
and samples 7–12 from patients with diagnosed bacterial vaginosis. 
Each sample was sequenced using whole-genome and 16S rRNA 
ONT workflows. The whole-genome reads were processed into 
species- and genus-level abundance profiles using Kraken 2 and 
Bracken, while the 16S rRNA reads were processed with Emu.

16S rRNA gene and whole-genome shotgun data. Comparison of 16S 
rRNA and WGS sequencing data is not trivial, even when sequenc-
ing libraries are prepared from the same nucleic acid preparation; 
bias introduced during amplification and sequencing in marker gene 
sequencing may differ from the bias produced in WGS sequenc-
ing, which ultimately influences the bioinformatic analysis in each 
approach42. Still, this comparison is useful to present the benefits 
and limitations of 16S rRNA gene amplicon sequencing. Given 
that swabs contained a significant portion of host DNA (98–99% 
of reads classified as human by Kraken 2 and Bracken), the number 
of bacterial reads was lower in WGS than in 16S rRNA sequencing. 
To reduce the bias due to imbalance in sensitivity between the two 
methods, a species detection threshold of 0.01% was set for Emu.

Table 2 | Relative abundance of dominant and marker taxa assigned by Emu from 16S rRNA gene ONT data and by Bracken from 
WGS ONT data

Control group Vaginosis group

Sample 1 2 3 4 5 6 7 8 9 10 11 12

Dominant genera

Lactobacillus Emu 1.00 1.00 1.00 0.99 1.00 1.00 0.40 0.96 0.16 0.06 0.00 0.68

Bracken 0.88 0.95 0.95 0.60 0.98 0.97 0.11 0.64 0.05 0.57 0.02 0.34

Gardnerella Emu – – – – – – – – – 0.00 – –

Bracken 0.03 0.02 0.03 0.37 0.01 0.02 0.57 0.03 0.44 0.31 0.07 0.48

Prevotella Emu – – – – – – 0.03 0.00 0.04 0.01 0.04 0.02

Bracken 0.01 0.01 0.01 0.01 0.00 0.01 0.09 0.09 0.13 0.12 0.53 0.05

Megasphaera Emu 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.50 0.00 0.25

Bracken – – – – – – 0.00 0.00 0.06 – 0.00 0.05

Aerococcus Emu – – – – – – 0.29 – 0.01 0.15 0.00 0.02

Bracken – 0.00 – – – – 0.11 0.00 0.01 – 0.00 0.01

Lactobacillus CST marker species

L. crispatus Emu 0.00 0.50 0.99 0.00 1.00 0.99 0.00 0.96 0.00 0.00 0.00 0.00

Bracken 0.06 0.63 0.92 0.06 0.89 0.96 0.03 0.64 0.02 0.61 0.01 0.04

L. gasseri Emu 0.00 0.00 0.00 0.98 0.00 0.00 0.00 – – 0.00 – 0.00

Bracken – – – 0.46 – – 0.00 – – – – 0.00

L. iners Emu 0.99 0.47 0.00 0.00 0.00 0.00 0.34 0.00 0.16 0.06 0.00 0.68

Bracken 0.86 0.28 0.01 0.01 0.00 – 0.06 0.01 0.03 – 0.00 0.29

L. jensenii Emu – 0.02 0.01 – – 0.01 0.05 – – – – –

Bracken – 0.02 0.02 0.05 – 0.01 0.01 – – – – –

Inferred CST Emu 3 1 1 2 1 1 4 1 4 4 4 4

Bracken 3 1 1 2/4 1 1 4 1 4 1/4 4 4

CST, community state type. Dominant genera are defined as those with more than 10% abundance in at least one sample. The CST marker species of Lactobacillus have been defined previously40,41. The data 
are rounded and ‘–’ denotes true zero values.
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Table 2 lists the most abundant bacterial genera and the four 
Lactobacillus species that are used as markers for the inference of 
vaginal community state type. Healthy vaginal microbial commu-
nities are reported to be dominated by Lactobacillus species, while 
vaginal dysbiosis has been associated with high abundance of the 
genera Gardnerella, Prevotella, Megasphaera and Aerococcus43. Both 
pipelines, 16S rRNA and WGS, show relative abundance results that 
agree with that previous research.

The most notable discrepancy between the WGS and 16S rRNA 
methods for these genera is the relative abundance of G. vaginalis, 
in that the WGS method shows this species as being significantly 
abundant while the 16S rRNA method misses it almost entirely. 
This is a result of the same primer mismatch problem noted earlier 
for the family Bifidobacteriaceae, the parent family of G. vaginalis. 
Even with this bias, the inferred community state type is consistent 
between the Emu and Bracken workflows across the samples: both 
pipelines express the same marker species of the dominant commu-
nity state type in 11 of the 12 samples. Sample 10 is the only sample 
for which the assignment is different between the methods, and this 
may be explained by the low sequencing depth acquired in the WGS 
approach for this sample. Despite the variation in the community 
profiles generated for these two pipelines (Extended Data Fig. 5), 
the clearly inferred community state types were identical between 
the pipelines (except in samples 4 and 10), reflecting the congru-
ency in the clinical outcome of these two approaches.

Discussion
Emu is a homology-aware alignment likelihood approach in which 
read classification probabilities are adaptively updated based on 
read alignments to multiple reference sequences and the current 
community profile estimate. This iterative approach goes beyond 
the simple classification of individual reads and instead uses infor-
mation gathered from the entire community to enable accurate and 
robust community profiling despite high error rates in the input 
sequences. Demonstrated error reduction (Fig. 4) as well as the 
superior results reported when comparing Emu’s output to both 
read mappers tested alone (Supplementary Table 22) are indicative 
of the performance and flexibility of the adaptive likelihood model 
used in Emu.

Emu is impactful for two main reasons: the reduced number of 
false positives and the ability to differentiate between genomically 
similar species. To demonstrate the false-positive count reduction 
accomplished by the EM portion of Emu, we can compare results 
between Emu and minimap2. In each of the four ONT test sets, the 
false positives drop significantly, namely from 73 to 0, from 4,665 to 
250, from 45 to 6 and from 252 to 40.

To observe Emu’s ability to distinguish between genomically 
similar organisms, we can zoom in on two pairs of similar spe-
cies in our MBARC-26 dataset. The first pair includes Salmonella 
bongori and Salmonella enterica, which have true relative abun-
dances 0.04% and 0.17%, respectively. The reference sequences for 
these species have an average nucleotide identity of 97%, but Emu is 
able to accurately determine the appropriate relative abundance for 
each of these species within 0.001%. A second similar pair includes 
Desulfosporosinus acidiphilus and Desulfosporosinus meridiei with 
relative abundances of 7% and 2.6%, respectively, and an aver-
age nucleotide identity between the two reference species of 94%. 
Emu accurately estimated each of their relative abundances within 
0.0005% of the expected value.

While both MetaMaps and Emu were developed for long-read 
data and incorporate a form of the EM algorithm, their difference 
is best understood in terms of ‘horizontal’ alignment (MetaMaps) 
and ‘vertical’ alignment (Emu). MetaMaps was developed for 
the analysis of shotgun metagenomic data and can make use of 
homology information from entire microbial genomes to correctly 
place individual reads (that is, horizontal alignment); this enables 

MetaMaps to skip (computationally expensive, in particular at the 
scale of the reference databases used for whole-genome metage-
nomic analysis) base-level alignment between reads and reference 
sequences and limit itself to more efficient approximate alignment. 
Emu, by contrast, is designed for the accurate analysis of an indi-
vidual locus across a very large number of reference records (that 
is, vertical alignment); given that the 16S rRNA gene sequences of 
different species may differ by as little as a few bases, Emu operates 
under conditions in which individual alignment matches and mis-
matches need to be carefully examined while taking into account 
the increased error rate of ONT sequencing. Base-level alignment 
between individual reads and the 16S rRNA gene reference database 
(that is, vertical alignment) thus becomes necessary, along with an 
EM approach that uses an alignment likelihood model tailored to 
the requirements of 16S rRNA gene sequence analysis.

Due to the nature of probabilistic models, Emu creates a long tail 
of low-abundance species. To avoid this long inaccurate list in the 
results, the built-in threshold for Emu is the equivalent abundance 
of 1 read for samples with less than 1,000 reads or 10 reads for any-
thing larger. This means that Emu will not be able to detect microbes 
with abundance lower than this threshold. This occurs in our syn-
thetic gut mock community, which contains only five Clostridium 
leptum reads, and thus Emu does not report this species. Therefore, 
in cases in which the detection of ultra-low-abundance organisms is 
imperative, Emu would probably not be the best tool.

The optimal abundance threshold cut-off to distinguish between 
true assignments and noise resulting from the EM algorithm is 
an open question for Emu. A future model could use the statisti-
cal information from the sample to establish a minimum abun-
dance threshold instead of the current somewhat arbitrary cut-off 
explained above. A second parameter setting that is open for future 
development is the number of secondary alignments kept from the 
mimimap2 output. The current default of up to 50 alignments was 
selected with a parameter sweep to evaluate the trade-off between 
accuracy and additional computing cost, and can be modified at the 
command line. A future version of Emu could incorporate an algo-
rithm to determine an optimal value given the input sample.

Given that Emu is a full-length alignment-based approach, more 
computational resources (that is, memory and time) are required 
than alternative methods. This may prevent certain users from 
incorporating Emu into their pipeline depending on the availability 
of appropriate computing resources. Future work in this area could 
reduce these requirements.

Emu is a closed-reference approach, which ultimately restricts 
output to only those bacteria and archaea that are present in the 
database. As seen in our novel species simulation experiment, we 
would expect Emu to classify sequences from novel species as a 
near neighbor that is present in the database and therefore to accu-
rately classify these sequences at the lowest taxonomic rank that 
is present in the database. Further work in this area could label 
reads from novel species as ‘unclassified’ instead. However, as 
shown in Supplementary Table 19, this is a complex task given that 
even with the use of the larger database RDP and the k-mer-based 
technologies Kraken 2 and Bracken, the novel species still fail to 
be labeled as ‘unclassified’ when it comes to high-error full-length 
16S rRNA reads.

In addition to comparing 16S rRNA gene microbial community 
profiling methods, the present results also highlight the differences 
between the ONT and Illumina 16S rRNA gene sequencing tech-
nologies. In both mock communities, ONT reads are able to deliver 
lower L1 and L2 distances than Illumina reads. An argument can 
be made that selection of a different hypervariable region could 
have produced better results for the Illumina reads, however, this 
resembles the actual decision-making process for Illumina users 
and the potential bias it may produce. It is also important to note 
that Emu and NanoCLUST are the only tools evaluated here that 
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were designed for 16S rRNA, thus we expect full-length reads with 
these two methods to produce the most accurate results.

The potential for long, single-molecule reads to deliver higher 
resolution pictures of microbial communities from single-pass 
sequencing remains enticing, but the high rate of sequencing error 
is a formidable obstacle. Specifically, although short reads are con-
strained in sensitivity below the genus level, long reads are not; 
instead, their difficulty is with specificity. In the case of long reads 
applied to 16S rRNA amplicon sequencing, Emu represents an 
important improvement in minimizing this trade-off and it has the 
potential to show the communities of well-studied environments in 
a new light. Given that the error profiles are dynamically learned 
from the input data, Emu has the flexibility to adjust as sequenc-
ing technologies develop and would continue to be appropriate for 
use in novel third-generation sequencing technologies in future 
applications.
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Methods
Emu algorithm. Figure 1 shows a high-level schematic diagram of the algorithm, 
while Extended Data Fig. 1 provides a more detailed picture of the equations in the 
algorithm. The pipeline begins by generating alignments between input reads and 
database sequences with minimap2 (ref. 30). With these mappings, the following 
steps are completed: establishment of the initial probabilities, redistribution of the 
sample composition with an EM algorithm, and then the trimming of noise for a 
final estimation.

Initial probabilities. To apply the EM framework we need, first, an initial sample 
composition estimate for vector F, and second, alignment likelihoods P (r|s) 
between each sample read r and database reference sequence s ∈ S. Given that 
we do not have any pre-existing knowledge about the sample composition, F 
starts as an evenly distributed vector F (t)t∈T = 1

|T|, where T is the set of all 
taxonomy identifications in S. To identify the alignment likelihoods P (r|s) we 
start by generating pairwise sequence alignments between r ∈ R and s ∈ S with 
minimap2, where R represents all reads in the sample. We determine the likelihood 
of the nucleotide alignment types mismatch (X), insertion (I), deletion (D) and 
softclip (S) by counting the number of occurrences of each nucleotide alignment 
type in the primary alignments. We define these probabilities with a simple 
proportion, P (c) = nc∑

c∈C nc , where C = [X,I,D,S] and nc is the sum of occurrences 
of that type among all of the primary alignments.

Using the likelihood for each type of nucleotide alignment, the 
likelihood for each pairwise sequence alignment r ∈ R, s ∈ S is calculated as 
P (r|s) =

∏
c∈C P (c)n̂c(r,s), where n̂c(r,s) is the normalized number of occurrences 

of alignment type c observed in the alignment between r and s. The count for 
each alignment type is normalized by dividing the length of the longest alignment 

for read r by the length of the alignment: n̂c(r,s) = nc(r,s) ∗

max
s′∈S

(len(r,s′))

len(r,s) . This 
normalization accounts for variation in alignment lengths for a given read, which 
is caused by deletions. In the event that no alignment is generated between r 
and s, P (r|s) = 0. Given that we are interested in the most likely taxonomy of 
r rather than the most similar sequence s, we keep only the highest P (r|s) for 
any s with species-level taxonomy identification (ID) t. Thus, the alignment 
probability between each read r and species-level taxonomy t is calculated with 
P (r|t) = max

s∈t

(∏
c∈C P (c)n̂c(r,s)

)
, where s ∈ t represents all s with the taxonomy 

ID t. With the initial probabilities set, we can now improve our sample composition 
estimation with an EM probabilistic model.

Redistribution of sample composition. The likelihood of r emanating from species 
t is constructed for each P (r|t) using Bayes’ theorem, P (t|r) =

P(r|t)∗F(t)∑
t∈T P(r|t)∗F(t). 

With these probabilities, F is redistributed as F (t)t∈T =
∑

r∈R P(t|r)
|R| .  

The accuracy of this estimate is evaluated using the total log likelihood,  
L (R) =

∑
r∈R log

[∑
s∈S P (r|t) ∗ F (t)

]
, which increases with each iteration. 

If this L(R) improvement from the previous iteration is substantial (>0.01), then 
this re-estimation step is repeated with the updated F. Otherwise, redistribution is 
complete and we move to the final phase of the algorithm.

Noise trimming for final estimation. Due to the nature of the probabilistic structure 
in an EM model, vector F is likely to contain a long tail of species claiming low 
abundance. To avoid this long list of false positives in the output, any abundance 
below the set threshold will be modified to 0 at this stage. The default threshold for 
Emu is an abundance equivalent to 1 read for samples with under 1,000 reads and 
10 reads for larger samples; however, the user can modify this parameter. Once F is 
trimmed, Emu enters one final round of abundance redistribution. The resulting F 
is given as the final sample composition estimation.

Simulated read generation. Two simulated datasets were generated to mimic the 
ONT full-length 16S rRNA reads. First, 958,655 ONT reads were simulated using 
DeepSimulator v1.5 (ref. 44) with default settings on a synthetic metagenomic 
community structure following the composition of the published mock community 
MBARC-26 (ref. 31). Reference 16S rRNA gene sequences were obtained from 16S 
RefSeq (Reference Sequence) nucleotide sequence records45. For strains not present 
in the RefSeq 16S rRNA sequence database, all strains under the same species as 
the desired strain were used instead.

Given that CAMISIM does not currently have the functionality to simulate 16S 
rRNA data, the simulator in its pipeline, NanoSim46, was used in isolation following 
the CAMI2 (ref. 32) mouse gut profile (https://www.microbiome-cosi.org). 16S 
rRNA sequences were selected from 16S RefSeq45 based on taxonomy IDs in the 
described CAMI2 mouse gut profile. For unfound organisms, 16S rRNA sequences 
were selected from the Ribosomal RNA Operon Copy Number Database (rrnDB) 
v5.6 (ref. 47) by name instead. The number of reads simulated for each microbe 
was determined by multiplying the relative abundance by 107 to ensure that each 
species contained at least one simulated read. Given that the generated dataset 
contained more than 400 million reads, this dataset was then subsampled down to 
1% to reduce computational load, resulting in 4,310,093 reads.

Creation of the gut microbiome mock community. Each gut bacterium was 
activated and propagated individually in brain heart infusion (BHI) medium 
supplemented with hemin (5 mg l−1) and yeast extract (10 g l−1). The plate counting 
method was used to determine viable cells in the cultures after 4 h of anaerobic 
cultivation at 37 °C; all bacterial strains were combined with an equal volume of 
100 μl. Cultures were then centrifuged at 12,000 g for 10 min before extra bacterial 
lysis with lysozyme followed by DNA extraction using the MasterPure Complete 
DNA and RNA Purification Kit. DNA was quantified using the Qubit kit.

Sequencing mock communities. ZymoBIOMICS. A detailed description of the 
steps taken to sequence the ZymoBIOMICS sample can be found in the Methods 
section of the study that produced these sequences33.

Synthetic gut microbiome. Library construction and sequencing of the V4 region 
of the 16S rRNA gene were performed using the NEXTflex 16S V4 Amplicon-Seq 
Kit 2.0 (Bio Scientific) with 20 ng input DNA, and sequences were generated on the 
Illumina MiSeq platform (Illumina).

Library construction and sequencing of the full-length 16S rRNA gene were 
performed using the MinION nanopore sequencer (ONT) and 16S Barcoding Kit 
1-24 (ONT, cat. no. SQK-16S024). The polymerase chain reaction amplification 
and barcoding was completed with 15 ng template DNA added to the LongAmp 
Hot Start Taq 2X Master Mix (New England Biolabs). Initial denaturation at 
95 °C was followed by 35 cycles of 20 s at 95 °C, 30 s at 55 °C, 2 min at 65 °C, and 
a final extension step of 5 min at 65 °C. Purification of the barcoded amplicons 
was performed using the AMPure XP Beads (Beckman Coulter) as per ONT’s 
instructions. Samples were then quantified using Qubit fluorometer (Life 
Technologies) and pooled in an equimolar ratio to a total of 50–100 ng in 10 μl. 
The pooled library was then loaded into an R9.4.1 flow cell and run as per the 
manufacturer’s instructions. MINKNOW v19.12.5 was used for data acquisition.

Emu 16S database. The default database of Emu is a combination of rrnDB v5.6 
(ref. 47) and NCBI (National Center for Biotechnology Information) 16S RefSeq 
downloaded on 17 September 2020 (ref. 45). Duplicate species-level entries, defined 
as entries with identical sequences and species-level identification, were removed. 
The resulting database contains 49,301 sequences from 17,555 unique microbial 
species. Database taxonomy was also retrieved from NCBI on the same date as 
the RefSeq download. This database can be reproduced by using the build custom 
database option in Emu on both the rrnDB and RefSeq sequences separately, then 
concatenating the results.

Emu was first tested with the NCBI 16S RefSeq database on our ONT 
ZymoBIOMICS sample. This yielded subpar accuracy (Supplementary Table 
24), which we attribute to the large number of reference sequences containing 
ambiguous bases. To increase the number of complete sequences in our database, 
rrnDB v5.6 was added because it contains species-level taxonomy and few 
ambiguous bases.

Three popular 16S rRNA gene databases are Greengenes48, RDP35 and SILVA49. 
Although each of the three contains far more sequences than our curated Emu 
database, species-level annotation in Greengenes is relatively low, SILVA does 
not map completely to the NCBI taxonomy, and RDP did not perform as well in 
our experiments. Given Emu’s reliance on mapping each read to several database 
sequences, we have found that a smaller, well-curated database performs better in 
Emu. We have therefore created the default database of Emu as explained above, 
but have also pre-built an RDP database for Emu that is publicly available.

Emu RDP database. An Emu-compatible RDP35 v11.5 database was generated 
with Emu’s build-database function for the database comparison quantitative 
results listed in Supplementary Table 13 and the computational resource results 
listed in Supplementary Table 14. To construct this database, bacterial and archaeal 
16S rRNA gene unaligned fasta sequences were downloaded from the RDP website, 
and the NCBI taxonomy database was downloaded in January 2022 (ref. 50). 
Mappings between the RDP fasta sequence IDs and the NCBI taxonomy IDs were 
generated using the NCBI accession2taxid database50. Sequences that mapped to a 
taxonomy ID that was no longer in the NCBI taxonomy were removed. In addition, 
sequences that mapped to ‘uncultured organism’ (taxonomy ID: 155900), bacteria 
sequences that mapped to ‘uncultured bacterium’ (taxonomy ID: 77133) and 
archaea sequences that mapped to ‘uncultured archaeon’ (taxonomy ID: 115547) 
were removed. The resulting Emu database contains 1,089,863 sequences and can 
be downloaded via GitLab (https://gitlab.com/treangenlab/emu). The input files 
to create the Emu RDP database were then used to create a Kraken 2 database and 
generate both Kraken 2 and Bracken results. The Emu-compatible RDP database 
fasta file was used to generate minimap2 RDP results.

16S rRNA quantitative comparison. Barcodes were removed from each mock 
community dataset using the trim_barcodes function in Guppy Basecalling 
Software v4.4.2 (ref. 51) for our ONT datasets and Trimmomatic v0.39 for the 
Illumina data. An equivalent of the default database of Emu was built for each 
software. ‘Unclassified’ reads, or those that failed to match a reference sequence, 
were removed prior to the calculation of relative abundance for each method. 
Supplementary Note 1 contains a detailed list of all commands used.
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Minimap2. Minimap2 v2.24 classification was generated by selecting the top 
database hit for each input read. The preset option for ONT was used for our 
long-read data and the genomic short-read mapping preset was used for our 
Illumina data. The relative abundance of each species was calculated as the number 
of species classifications divided by the total number of aligned reads.

Kraken 2. Kraken 2 v2.1.1 was used to generate a custom database matching 
our Emu default, and then to produce classification results. To calculate relative 
abundance from the Kraken 2 classification, the ‘clade counts’ column from the 
Kraken 2 report (kreport) was used. For species-level results, only rows with 
‘rank:S’ were kept. Relative abundance for each species was then defined as the 
clade counts for that species divided by the total number of clade counts in the 
reduced kreport. This process is then repeated at the genus level by restricting the 
kreport to only those rows with ‘rank:G’.

Bracken. Bracken v2.5.0 was used to gather microbial abundance estimates from 
our Kraken 2 results. For full-length ONT reads, our custom Kraken 2 database 
was converted to a Bracken database with a read length of 1,500. The same 
process was applied to Illumina data, with read lengths of 250 and 300 used 
for the ZymoBIOMICS and the synthetic gut microbiome mock communities, 
respectively. Bracken abundance estimations were then generated for each dataset 
at the genus and species level.

NanoCLUST. Given that NanoCLUST uses a BLAST database, a custom BLAST 
database was created to match our Emu default database. NanoCLUST v1.0 was 
then run on each of our long-read samples with the docker profile option. And 
given that NanoCLUST generates relative abundance estimates at each taxonomic 
rank by default, no further processing was necessary.

Centrifuge. Centrifuge v1.0.4 was used to build a custom database and generate 
taxonomic classification of the four ONT datasets. The kreport generation 
functionality in Centrifuge was then incorporated to create Kraken-style reports 
for each Centrifuge classification result. Genus- and species-level relative 
abundance results were calculated from these kreports in the same manner as the 
Kraken 2 results described above.

MetaMaps. MetaMaps v.0.1 was used to build a custom database from the Emu 
default 16S rRNA database. The datasets were analyzed with the following 
alterations to the default settings: the estimated alignment identity target parameter 
was set to 90 (--pi 90) for all datasets for improved performance, and the minimal 
read length was set to 500 (-m 500) for CAMI2 data given that the dataset had 
shorter reads. Genus- and species-level relative abundance results were calculated 
from the output file ending in EM.WIMP by selecting all rows with the appropriate 
‘AnalysisLevel’ (genus or species) then using the values in the ‘EMFrequency’ 
column directly.

QIIME 2. QIIME 2 results were produced with the classify-sklearn Naive Bayes 
classifier workflow of QIIME 2 2020.11.1. First, a QIIME 2 artifact representation 
of the default Emu database was generated with the appropriate QIIME 2 import 
command. Then, reference sequences were extracted appropriately based on the 
primer used for each sample and fitted to the reference taxonomy to produce 
a QIIME 2 classifier. The already demultiplexed sample reads were de-noised 
(Illumina) or de-replicated (ONT), and then classified with the appropriate pre-fit 
classifier. The taxonomic classifications were then collapsed to genus and species 
levels, and relative abundances were calculated separately for the two taxonomic 
rank results.

Establishing ground truth. A ‘Zymo-exclusive’ database containing only the 
provided 16S rRNA gene assembled reference genomes for the eight bacterial 
species in the sample was created. The ZymoBIOMICS samples were then mapped 
(BWA-MEM v0.7.17 for short-read data, minimap2 v2.17 for long-read data) to 
this Zymo-exclusive database for accurate classification of each read. Reads were 
classified as the top hit, and the ground truth relative abundances were derived 
from these results.

A restricted database for the 21 species known to be in our synthetic gut 
microbiome community was created by retrieving the NCBI 16S RefSeq entries 
for those species. This resulted in 45 sequences from 20 of the 21 species. Given 
that Romboutsia hominis is present in the sample but not in RefSeq, a Romboutsia 
hominis sequence was selected from GenBank52 and included in the restricted 
database. Mapping, classification and sample composition calculation follow the 
workflow for the ZymoBIOMICS community described above. This community, 
however, is subject to other undocumented contamination that may introduce bias.

Accuracy evaluation metrics. L1-norm is essentially the linear error and is 
calculated using the equation 

∑
s∈S |Es − Is|, where set S consists of the union 

between all of the species in the database and the ground truth, and Es and Is are 
the expected and inferred relative abundances for species s, respectively. A perfect 
L1 distance is 0, while an entirely inaccurate sample composition estimate would 
return an L1 distance of 2 given that 

∑
s∈S Es = 1 and 

∑
s∈S Is = 1. L2-norm is 

the sum of the squared error, which magnifies the cost of larger differences and 
is calculated using the equation 

√∑
s∈S (Es − Is)2 . Precision, recall and F-score 

are used to evaluate the accuracy of microbe presence. For this explanation, TP 
represents true positives, FP represents false positives, and FN represents false 
negatives. Precision is the proportion of claimed true positives that are truly 
present in the sample: TP

TP+FP. Recall is the percentage of expected positives that 
were detected by the software: TP

TP+FN. The F-score is simply the harmonic mean 

between the two values: 2·precision·recallprecision+recall . Given that the ZymoBIOMICS sample is 
guaranteed to contain <0.01% foreign microbial DNA, all ZymoBIOMICS results 
are trimmed to include only taxa with abundance ≥0.01%, prior to the calculation 
of performance metrics.

Computational resources. All software analysis was completed on a Ubuntu 18.04.4 
LTS system, with the exception of the MetaMaps runs, which were completed on 
CentOS Linux release 7.9.2009. The /usr/bin/time command was used to gather 
time and memory statistics. Reported CPU (central processing unit) time is 
calculated by summing the user and the system time, and the RAM (random access 
memory) requirements are determined using the maximum resident set size. The 
only exception is NanoCLUST, for which computational requirements were instead 
extracted from the Nextflow execution report and timeline. Here, run time was 
gathered from the ‘CPU-Hours’ output in the execution report, and the maximum 
resident set size was determined by the step with the largest memory usage (RAM) 
in the execution timeline. The computational requirements recorded for Bracken 
are an accumulation of both the Bracken and Kraken 2 commands, given that 
both are required to produce the Bracken abundance estimation. Computational 
requirements for the QIIME 2 workflow are left out of this analysis because QIIME 
2 involves several commands.

Clinical vaginal samples. Data generation. Total DNA and RNA was extracted 
using the ZymoBIOMICS DNA/RNA Miniprep Kit (cat. no. R2002). The 16S 
Nanopore sequencing library was prepared from 10 ng total DNA using the 16S 
Barcoding Kit (ONT, cat. no. SQK-RAB204). The whole-genome Nanopore library 
was prepared from the remaining total DNA using a Native Barcoding Expansion 
1-12 (PCR-free) Kit (ONT, cat. no. EXP-NBD104) and Ligation Sequencing Kit 
(ONT, cat. no. SQK-LSK109). Data were sequenced on a MinION flow cell type 
R9 (ONT, cat. no. FLO-MIN106D) in two runs (a 16S rRNA gene run and a 
whole-genome run). Data were acquired with MINKNOW core v.4.0.5. Basecalling 
and demultiplexing were done using Guppy v.4.0.15.

Data analysis and databases. Computational analysis of vaginal samples was 
performed on a machine with CentOS Linux release 7.9.2009. Whole-genome 
sequencing data were analyzed with Kraken v.2.1.1 and Bracken v.2.5.

The Kraken 2 database was built from a custom metagenomic database, 
which includes all latest complete and reference genomes derived from the RefSeq 
database in the divisions bacteria, fungi, protozoa and viral of RefSeq (state 
26.12.2019). The host portion of the metagenomic database is represented by a 
1000 Genomes Project reference sequence and two well-characterized human 
assemblies (GCA_001524155.4 and GCA_002009925.1).

Retrieved Bracken abundances at both the genus and species levels were 
recalculated considering only bacteria to align with 16S rRNA gene results. 
Therefore, total Bracken results belonging to the superkingdom ‘Bacteria’ were 
assumed as having 100% abundance for each sample.

Emu was run on 16S rRNA sequencing data with a species detection threshold 
of 0.01%. Species- and genus-level abundances were retrieved from the Emu 
output. Community state types were inferred from the abundance profile by 
considering the dominance of four marker Lactobacillus species.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All sequenced samples used in this study are publicly available on Sequence 
Read Achieve (SRA). Both ZymoBIOMICS datasets are under BioProject ID 
PRJNA587452 with SRA accessions SRR10391201 for ONT and SRR10391187 for 
Illumina33. Our gut mock community is under BioProject ID PRJNA725207. The 
12 vaginal samples used for our real-world application demonstration are uploaded 
under BioProject ID PRJNA723982. Our simulated sequences are publicly 
available on OSF under project 56UF7. Databases used in this paper include 
16S RefSeq nucleotide sequence records (https://www.ncbi.nlm.nih.gov/refseq/
targetedloci/16S_process/), Ribosomal Database Project (RDP) v11.5 (https://rdp.
cme.msu.edu/) and rrnDB v5.7 (https://rrndb.umms.med.umich.edu/). Study of 
vaginal microbiomes was approved by the ethics committee of the Medical Faculty 
of Heinrich Heine University. All patient samples were collected with informed 
consent from individuals in the context of an exploratory clinical microbiome 
study approved by the Ethics Committee of the Medical Faculty of Heinrich 
Heine University Düsseldorf (institutional review board study identification 
‘2019–600-andere Forschung erstvotierend’).
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Code availability
Emu and all associate code are available on GitLab (https://gitlab.com/treangenlab/
emu). Emu can be installed via Bioconda (https://anaconda.org/bioconda/emu). 
A Code Ocean capsule of the package is provided (https://doi.org/10.24433/
CO.7761675.v1). All scripts and data used to compile quantitative comparison 
results can be found on GitLab (https://gitlab.com/treangenlab/emu-benchmark).
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Extended Data Fig. 1 | Pictorial representation of the complete Emu algorithm. Follow the gray-arrowed path until expectation–maximization (EM) 
iterations are complete, then pink arrows are followed to the final composition estimate. The method starts by establishing probabilities for each 
alignment type C = [mismatch (X), insertion (I), deletion (D), softclip (S)] through occurrence counts in the primary alignments. Next, alignment probability 
P(r|t) is calculated for each read, taxonomy pair (r,t) by assuming the maximum alignment probability between r and t. Meanwhile, an evenly distributed 
composition vector F is initialized. The EM phase is entered by determining P(t|r), the probability that r emanated from t, for all P(r|t). F is updated 
accordingly, and the total log likelihood of the estimate is calculated. If the total log likelihood is a significant increase over the previous iteration (>.01), 
then EM iterations continue. Otherwise, the loop is exited, and F is trimmed to remove all entries less than the set threshold. Now following the pink 
arrows, one final round of estimation is completed with the trimmed F to produce the final sample composition estimate.
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Extended Data Fig. 2 | ZymoBIOMICS theoretical and imputed ground truth community profiles. The theoretical values are taken from ZymoBIOMICS 
standard report of relative abundance estimates based on 16S rRNA gene copy numbers (https://files.zymoresearch.com/protocols/_d6305_d6306_
zymobiomics_microbial_community_dna_standard.pdf). Truth_ONT and truth_illumina represent the ground truth relative abundances calculated for our 
ONT and Illumina datasets respectively, as described in the Establishing Ground Truth subsection under Methods.
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Extended Data Fig. 3 | Performance on our synthetic gut microbiome mock community. Heatmap of species-level error between calculated ground 
truth and estimated relative abundances, where darker blue denotes an underestimate by the software, darker red denotes an overestimate, and white 
represents no error. All Oxford Nanopore Technologies (ONT) errors are measured in relation to the ground truth of the ONT dataset, while Illumina errors 
are measured in relation to the ground truth for the Illumina dataset. Color scheme is capped at ±10, resulting in error greater than ±10% observing the 
maximum error colors. Displayed are the 20 species claiming the largest abundance in any of the ONT or Illumina sample results. ‘Other’ represents the 
sum of all species not shown in figure for the respective column. Species-level L1-norm, L2-norm, precision, recall, and F-score are also plotted for the 
methods evaluated.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Articles NATuRE METHoDS

Extended Data Fig. 4 | Family-level relative abundance error heatmap of novel species simulation. Heatmap of family-level error between ground truth 
and estimated relative abundances for both the Emu and RDP incomplete databases (missing 35 of the 345 CAMI2 simulated species) with our CAMI2 
dataset. Here, darker blue denotes an underestimate by the software, darker red denotes an overestimate, and white represents no error. Color scheme 
is capped at ±3, resulting in error greater than ±3% observing the maximum error colors. Displayed are the families of the 35 species that were removed 
from each of the databases.
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Extended Data Fig. 5 | Bacterial community of 12 vaginal samples. Species with estimated abundance of over 1% in at least one sample with either Emu 
or Bracken are shown. Data is grouped by condition: healthy control or vaginosis.
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